Термоэлектри́ческие явле́ния — совокупность физических явлений, обусловленных взаимосвязью между тепловыми и электрическими процессами в металлах и полупроводниках.
В некоторой степени все эти эффекты одинаковы, поскольку причина всех термоэлектрических явлений — нарушение теплового равновесия в потоке носителей (то есть отличие средней энергии электронов в потоке от энергии Ферми).
Абсолютные значения всех термоэлектрических коэффициентов растут с уменьшением концентрации носителей; поэтому в полупроводниках они в десятки и сотни раз больше, чем в металлах и сплавах.
К термоэлектрическим явлениям относят:
Эффект Зеебека
Эффект Пельтье
Эффект Томсона
Эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает ЭДС (термоэдс), если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников называется термоэлементом или термопарой.
Величина возникающей термоэдс зависит только от материала проводников и температур горячего (T1) и холодного (T2) контактов.
В небольшом интервале температур термоэдс E можно считать пропорциональной разности температур:
E = α12(T2 − T1), где α12 — термоэлектрическая способность пары (или коэффициент термоэдс)
В простейшем случае коэффициент термоэдс определяется только материалами проводников, однако строго говоря, он зависит и от температуры и в некоторых случаях с изменением температуры α12 меняет знак.
Если вдоль проводника существует градиент температур, то электроны на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в полупроводниках в дополнение к этому концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному и на холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие.
ЭДС, возникновение которой описывается данным механизмом, называется объёмной ЭДС.
Контактная разность потенциалов вызвана отличием энергий Ферми у контактирующих различных проводников. При создании контакта уровни Ферми становятся одинаковыми, и возникает контактная разность потенциалов
На контакте тем самым существует электрическое поле, локализованное в тонком приконтактном слое. Если составить замкнутую цепь из двух металлов, то U возникает на обоих контактах. Электрическое поле будет направлено одинаковым образом в обоих контактах — от большего F к меньшему. Это значит, что если совершить обход по замкнутому контуру, то в одном контакте обход будет происходить по полю, а в другом — против поля. Циркуляция вектора Е тем самым будет равна нулю.
Если температура одного из контактов изменится на dT, то, поскольку энергия Ферми зависит от температуры, U также изменится. Но если изменилась внутренняя контактная разность потенциалов, то изменилось электрическое поле в одном из контактов, и поэтому циркуляция вектора Е будет отлична от нуля, то есть появляется ЭДС в замкнутой цепи.
Данная ЭДС называется контактная ЭДС.
Если оба контакта термоэлемента находятся при одной и той же температуре, то и контактная, и объёмная термоэдс исчезают.
Если в твёрдом теле существует градиент температуры, то число фононов, движущихся от горячего конца к холодному, будет больше, чем в обратном направлении. В результате столкновений с электронами фононы могут увлекать за собой последние и на холодном конце образца будет накапливаться отрицательный заряд (на горячем — положительный) до тех пор, пока возникшая разность потенциалов не уравновесит эффект увлечения.
Эта разность потенциалов и представляет собой 3-ю составляющую термоэдс, которая при низких температурах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнительная составляющая термоэдс, обусловленная эффектом увлечения электронов магнонами.
Применяется для создания термодатчиков (например в компьютерах). Такие датчики миниатюрны и очень точны.
Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока:
Q = ПАBI = (ПB-ПA)I, где
Q — количество выделенного или поглощённого тепла;
I — сила тока;
П — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α соотношением Томсона П = αT, где Т — абсолютная температура в K.
Эффект открыт Ж. Пельтье в 1834 году, суть явления исследовал несколькими годами позже — в 1838 году Ленц, который провёл эксперимент, в котором он поместил каплю воды в углубление на стыке двух стержней из висмута и сурьмы. При пропускании электрического тока в одном направлении капля превращалась в лёд, при смене направления тока — лёд таял, что позволило установить, что в зависимости от направления протекающего в эксперименте тока, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Эффект Пельтье «обратен» эффекту Зеебека.
Эффект Пельтье более заметен у полупроводников, это свойство используется в элементах Пельтье.
Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта.